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Abstract 

We study some issues related to the notion of generalized holonomies, providing a rigorous math- 
ematical framework where we discuss early heuristic ideas from the physics literature, mainly due 
to R. Gambini and his collaborators, who have tried to formulate an “extended loop representation” 
of quantum gravity in Ashtekar variables. We also define a BACH (Baker-Campbell-Hausdorff) 
series for the formal generalized holonomy and prove its convergence in some particular cases. 
Finally, we discuss the issue of covariance of generalized holonomies, and prove the covariance for 
nilpotent connections. Copyright 0 Elsevier Science B.V. 
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1. Introduction 

Let us begin with the following example. Consider an abelian gauge field theory (source 
free electromagnetism) on a compact oriented three-dimensional manifold M, whose clas- 
sical (physical) configuration space C is the space Q ’ M of smooth 1 -forms, modulo gauge 
transformations, i.e., 
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As in the scalar field theory an important role in quantum electromagnetism will be played 
by the dual of the classical configuration space, in a sense the “quantum configuration space”: 

C* = &?‘M/dC%)*. 

The reason for this is the fact that there are well-defined measures in C* and all the cyclic 
representations of the electromagnetic Weyl algebra can be realized in a Hilbert space: 

consisting of square integrable functions on C”, with respect to some quasi-invariant measure 

P (see [91). 
Let us now study C*. This space is the space of DeRham 1 -currents R, that vanishes on 

dCmM, i.e., of closed DeRham l-currents. Recall that we define the boundary i3R, of a 
DeRham l-current R, by (aR, f) = (R, df) Vf E PM, and that R is called closed if 
aR=O. 

Every (piecewise smooth) loop 
l-current R, on M, by integration 

R,(A) = /A> A E C. 

y defines an element of C*, i.e., a DeRham closed 

In fact, R,(df) = 0. 
Let us define the following equivalence relation on the space of piecewise smooth free 

loops in M: 

The quotient space will be denoted by ‘KC, and its elements will be called holonomic 
loops, or briefly loops for simplicity. It follows that any (finite) [W-linear combination of 
loops belongs to C”. Let us denote by ‘M&J the R-linear subspace of C*, generated by all 
the R,. 

Proposition 1. The space FL& is dense in C* E (Q ’ /dP M)* (in the weak *-topology). 

Proof We use the following facts (see [ 151): 
- (i) The weak *-topology in the dual X* of a TVS X makes X* into a locally convex 

TVS, whose dual (X*)* is X, i.e., every (weak-*) continuous linear functional on 
X* has the form R H Rf for some f E X VR E X*. 

- (ii) As a corollary of Hahn-Banach theorem, in a locally convex TVS X, a subspace 
S is dense iff the only continuous linear functional that vanishes on S is the null 
functional. 

Now if F is a (weak *) continuous linear functional on X = C*, then, by (i), F takes 
the form R H Rw, for some w E (Q1 M/dC”M)*. If F vanishes on 7-&, then 0 = 
F(R,) = R,(w) = fvw Vy, which implies that w = 0. So F = 0, and by (ii), ‘Ft.& is 
dense in C*. 0 
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We call the elements of the completion %R of 7-L&, (abelian) generalized loops, and we 
will denote them by (II, B,. . Therefore, Proposition 1 says that DeRham closed 1 -currents 
are equivalent to generalized loops. Notice that along with the “distributional elements” of 
the type R,, the space of generalized loops contains also “smooth elements”, namely closed 
2-forms e : w + sM 0 A e. 

Consider again an abelian gauge field field theory with gauge group G = U(l), so that 
G = i[w and let A = iw be an abelian connection 1 -form. In this case we define, for a loop 
y E WC, the holonomy U, (A), of A along y, by 

.,,,,;,i-;‘=l+g$ /u ‘. 

( i Y 

Note now that we can generalize this definition, the taking instead a loop y, a generalized 
loop C-r in ‘l-L&, and then define a generalized holonomy U,(A), by 

UC (A) = U: (iw) = e i&(w) = 1 + (1) 

If g(x) = eif(‘) E U( 1) = i[w is a gauge transformation, then 

AR = flAg + g-’ dg = A + idf = i(w + df) 

and so 

since &(df) = 0. So in this case we have gauge covariance (invariance) of the generalized 
holonomy. 

Our aim in this note is to generalize the above concepts in a non-abelian context, con- 
sidering “non-abelian generalized loops” and non-abelian connection forms. More exactly, 
we try to give a rigorous mathematical framework where we discuss early heuristic ideas 
from the physics literature, mainly due to R. Gambini and his collaborators, who have tried 
to formulate an “extended loop representation” of quantum gravity in Ashtekar variables 
(see [2-4,161). 

The paper is organized as follows. In Section 2, we review the main definitions and prop- 
erties of generalized loops, based on Chen integrals, as were developed in our early work 
[ 181. In Section 3, we define (formal) generalized holonomies along generalized loops, and 
study some of its properties. We also define a BACH (Baker-Campbell-Hausdorff ) series 
for the formal generalized holonomy and prove its convergence in some particular cases. Fi- 
nally, in Section 4, we discuss the issue of covariance of generalized holonomies, recovering 
the same results of [ 161, and analyzing the particular case of nilpotent connections. 
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2. The group of generalized loops and its Lie algebra 

Let M be a smooth real compact n-dimensional manifold. Let us define the so-called 
shlcfle algebra of M. Consider the real vector space L?‘M of real 1 -forms on M, and the 
tensor algebra (over R) of Q’M: 

(2) 

For simplicity we use the notation 

forr > l,andsetwl... wr = 1, when r = 0. Now we replace the tensor multiplication in 
7(S2 ‘M) by the shufle multiplication ??, defined by 

W] ‘. , wr ??wj.+1 . . w,+ = C’ aJ_(l) “‘w,(r+s). (3) 

where ck denotes sum over all (r, s)-shuffles, i.e., permutations cr of r + .s letters with 
a-‘(l) < ... <a-‘(r)and~~‘(r+l) < ... <a-‘(r+s). 

(I(Q’M), ??) is then an associative, graded commutative real algebra, with unity 1 E 
R c ‘T(SZ’M), which is called the sh@e ulgebru of M and is denoted by Sh(M), or 
simply by Sh. We endow Sh(M) with the structure of nuclear LMC topological algebra in 
the way indicated in [ 181. 

Sh has also a real Hopf algebra structure. This means (see [ 1; 17, Chap. XII]) that, in 
addition to the above real algebra structure, we have three R-linear maps A : Sh + Sh@Sh, 
called comultiplication, t : Sh + R , called counity, and J : Sh -+ Sh, called antipode, 
defined, respectively, by the formulas 

A(w, . ..w.) =&, “‘Wi @Wi+] “‘Wy, (4) 
i=o 

t(wt ‘. . w,) = 
i 

0 ifrql, 
1 ifr=O, 

J(wl . .Wr)=(-lyW,...WI, (6) 

which satisfy the usual Hopf algebra identities. 
Now, let us fix a point p E M, and consider the based loop space LM, of piecewise 

smooth loops based at p, and the so-called group of loops of the manifold M, based at p, 
(CM,/-, O), which is denoted by LM,. Elements of LM, will be called simply (usual 
or geometrical) loops, and we denote simply by a$, the product o 0 fi of two elements 
o, /I E LM, (see [ 181 for definitions and details). 

Each loop y E LM, gives rise to a (continuous) linear functional X,, on Sh = Sh(M), 
defined in each homogeneous element, through iterated Chen integration: 
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Xy(wl...wr)= s Wl “‘Co, 

= 
s 

fi(t1).f2(t2)...f,(t,)dtl dt2... &. (7) 

A, 

where A,. = ((tl, . . , t,.) E R” : 0 5 tl 5 . I tr 5 11 and fj(t) = wj(v(t)) . P(t). 
We deduce, from the properties of the interated Chen integrals, the following properties 

for these linear functionals X, E Sh*: 

X,(u ??v) = Xv(u)Xy (v) Vu, v E Sh, 

i.e., each X, is a multiplicative linear functional (a character) in Sh, and 

X,/j = X, * Xg = (X, @I X,) o A. 

X,-I =X,oJ 

VU, /? E LM,. Moreover, these X, satisfy the following differential constraints: 

X,(df) = 0. 

X, ((dS)wt . . .w) = Xy((fw)w2...w) - f(P).X,bl . ..&I. 

X,h . ..w(df’)) = Wy(w ...02)). t’(p) - X,(w ..~wr-~(w.f)), 

X,(wl ...w;-l(df)wi+l . ..w.) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

= X,(Wl . . ‘wi-l(fwi+I)wi+2”‘W,)-X~y(01 . ..(wi-l.f)W+l ‘.‘Wr), (14) 

Vf~PMandforallwt,...,w,~G’~M. 
Let us consider the algebra of functions &,, defined on the loop group LM,, generated 

by the functions Fwl”‘ur : LM, + k defined by 

Fwl.“w,-(y)=Xy(~,...~r)= wl...O,. s (13 

We know that A, is a topological LMC algebra of separating functions of LM,, which 
is isomorphic to the quotient algebra Sh/J,,: 

WM)IJ, 2 A,. (16) 

Here J, is the ideal: 

J, = I, + (dC) (17) 

where (dC) is the ideal generated by dCx (M) in Sh(M) and I, is the ideal in Sh generated 
by all the elements of the type 

(df)wt . . w - (fw)w2 . . . w + f(p) . (WI . WI, 

~1 . ..o.(d.f) - (WI . ..w.). f(p) +w .~~w,-l(~,.f), 

(18) 

(19) 
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WI ... co-l (df)wi+l co,. - Wl ‘.‘wi_l(fWi+l)Wj+2”‘0, 

+Wl .‘.(O&lf)W+l “‘Wr, (20) 

Vf E CmM andforallwt,...,w, E Q’M. 
The algebra d, admits also a real Hopf algebra structure, by defining the comultiplication 

A : dP + dP @ dP, the counity t : dP + k and the antipode J : d, -+ A,, respectively, 

by 

A(F @ FW’+l “‘ur , (21) 
i=O 

e(F U”“,r) = 
0 ifrzl, 
1 ifr = 0, (22) 

J(F ~I-,) = (_,)r,~r-‘l~ (23) 

Now consider the spectrum A, of the algebra d,,, consisting of all nonzero continuous 
characters & E A;, or equivalently consisting of all nonzero continuous linear functionals 
a! : Sh -+ IF! that satisfy the two conditions 

&(u ??v) =&(u)&(v) Vu, v E Sh, (24) 

G(J,>) = 0. (25) 

Elements of A, are called generalized loops, based at p E M. We can define a structure 
of group on A,, through 

&*j-(&@j&A, (26) 

where we have used the identification R @ R 2: R. More explicitly 

ii *&II1 . . .o,) = -&ol . ‘. Wj) B”(w;+1 ‘. w,). (27) 
i=O 

We also define the inverse of ~5 E A,,, by 2 o J, i.e., 

G-$01 . .w,) = (-l)‘G(w,“.wt), (28) 

and take ??, given by (5), as the unit element. 
We call the above-mentioned topological group (A,,.), the group ofgeneralized loops 

of M, based at p E M, and we denote it by LxM,. 
We have a natural embedding of LM, as a subgroup of LxMp, given by the “Dirac map” 

X : LM, + L2,, defined by 

Y H X,, (29) 

where X, is given by (7). Since the functions Fwl”‘wr separate “points” in LM,, we see 
that this is an injective embedding. So we identify LM, with its image under X, in A,, 
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and endow LM, with the induced topology. In this topology, a sequence (a,) converges 
to a! in LM, iff limn+oo F”(a,) = F”(a), Vu E ShM. 

Hereafter, we always identify a usual loop y E LM, with its imagez, in Lx, c Sh*. 
We define the Lie algebra I%?,, of the group of generalized loops LM, as the subspace 

of Sh* consisting of the so-called point derivations at t, that vanish on JP, i.e., an element 
0 E Sh* belongs to lzM, iff 0 satisfies the two conditions 

O(u 0 v) = t(u)@(v) + @(U@(V), (30) 

O(J,) = 0. (31) 

The Lie bracket in lx, is defined through 

[01,02]~@,*02-@2*0t. 

Note that any point derivation 0, at E, satisfies 

O(0, . ‘. wr 0 Lo,+1 . co,+,) = 0 

Vr > 1, Vs 2 1, and from this we can deduce that 

@“(WI . . . w,) = 0 Vn r 1 0, 

where @“+I E O”*OVn 2 1. 
Now, for each 0 E lzP, we can define exp 0 by 

(32) 

(33) 

(34) 

where, as always, this means that, for each 01 . . w,, exp O(o . . . w,) is defined by 

exp O(wt f . . w,) = 

( 1 

c+cT (w...w) 
fill 

(36) 

if, of course, this series converges. But from (34) it follows that the series (36) is in fact a 
finite sum, and so exp 0 is well defined, in the above sense. Moreover, we can prove that 
exp 0 is a generalized loop, i.e., satisfies conditions (24) and (25). 

2.1. Example 

Let R : r\‘(M) -+ [w be a compactly supported closed DeRham l-current, and define an 
element @R E lxP, through 

@R(Wt . . Cd,) = 
0 ifr # 1, 
R(wl) ifr = 1. 

Recall that @R must obey the differential constraints (11) and (12), i.e.5 @R(df) = 0 and 
@R(fW) = f(P)@R(w). This last condition implies that @R must be extremely “singular”. 
One such @R is obtained for R = S,, u E T,,M, the Dirac current S,(w) = C+(U). 
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Then we can compute that 

and so on. 
Conversely, given & E LxM,, we define 

where (6 - E)” = (Z - .G)?‘-’ * (& - E), Vn > 1. Since 

(37) 

(&--_y(W,...W,)=O Vtz 2 r > 0, (38) 

log 61 is also a well-defined element in the above sense, which moreover, belongs to lx,]. 
By the calculus of formal power series, we known that 

exp(k log&) = Gk Vk E Z. log(exp 6) = 6. 

Let us define, for each t E R: 

2 E exp(t log&). (39) 

Then we can easily prove that t H SE’ is a l-parameter subgroup of Lz,, generated by 
log 6, i.e., 

c-u0 = (F. c_wt * &;;” = &t+” 2 -lz 
. lim ~ = log&. 

r-o t 

this last limit in the above (weak) sense. 

3. Generalized holonomies 

Note that definition (7) works equally well for l-forms A, on M, with values in an 
associative algebra A (p.ex., @ or any subalgebra of g/(p) = gl(p, C), the algebra of p x p 
complex matrices). Of course, in this case the functions X,, defined by (7), take values on 
A. So, for example, if A C gl(p), then Xy(AlA2) = sy AlA2, with Al, A2 E R’M @A 
i.e., A 1, A2 are two matrices of usual 1 -forms in M), denotes the matrix in d c g/(p): i 

= (Al);, @ (AZ); = 
s s 

(A&Ad; 

j y Y 

(40) 
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andthesameforJAt...A,. 
X,(Al...A2)=JyA,... A, satisfy the same differential constraints, namely (note the 

order of the products) 

X,(dF) = 0, (41) 

X,(dFA1...A,)=X,((FA~)A2...A,)--(p).Xy(A~...A,), (42) 

X,(AI .. .A,dF) = (X,(AI . ..A.)). F(p) - X,(AI . ..A.-I(A~F)). (43) 

Xy(Al . ..A._l(dF)A;+t . ..A.) = Xy(Al ‘.‘A~-~(FA~+I)A;+z. A,) 

- Xy(Al . (Ai- F)A;+l . . A,) (44) 

VF E C~M@_4andforallAt,...,A, E SZ’M@_A.(Note,thatAt...A,meansthe 
product of the matrices AI, AZ, . , A,., the entries being multiplied through @.) 

In particular, if { T”),=~,...,,, is a basis for A, and if 

A = &,T”, W, E Q’(M). (45) 
‘I= I 

is an A- 1 -form in M, we can write, using (40): 

If IIA(t)ll = llA,(tjW(t))ll 4 M Vt E LO, 11, Then 

A( A(T,)dtldt2 

A, 

5 
s 

HA(t A(fr)lldtidb 
A, 

5 M’vol(A,) = K 
r! 

and so, the series 

hj+/A+/AA+/AAA+... 

Y Y Y 

. dtr 

. . dtr 

(46) 

(47) 
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converges in Gl(p). When A = S is the Lie algebra of a Lie group G 5 G/(p), and 
A E R ’ (M) @ 6 represents a connection l-form, then its parallel transport (or holonomy) 

U : I’M --f G C Cl(y) 

is given exactly by the above chronological series of interated itegrals (see [S] for all these) 

(!,(A)=ld+/A+[AA+/AAA+-.. 

Y Y Y 

=Id+x c Xy(~~,wNZ...~~~)Tu’T’~...Ta~. 
r>o UI . . . ..‘1. 

(48) 

Under a gauge transformation g : U 5 M -+ G c G/(p), we have that 

A + A” = g+Ag + g-’ dg, (49) 

and (see [lo]) 

Uy(A’) = g-‘(~)U,(&0)> (50) 

where p = y(o), and so we obtain a gauge independent loop functional, defined by 

M&(A) = TrU,(A), 

which is usually called Wilson loop variuhle. 

(51) 

Now we would like to define generalized holonomies and generalized Wilson loop vari- 
ables, through formulas similar to (48) and (5 l), but instead of the usual loop v Z X,, we 
would like to put a generalized loop Cr E Lx, (see the discussion in Section 1). 

Definition 1. Given a connection l-form A E Q’(M) @ G, and a generalized loop a! E 
LxMp, we define the formal generalized holonomy U:(A), through the formal series 

U,(A)=~;(AAy) 
rz0 r 

=Zd+x c ~(w,,w,~.~.w,,)Ta’Ta2...TU’. 
r>o al....,% 

where ( Ta} is a basis for G, and A = x0 q, Ta. 

(52) 

Note that the formal generalized holonomy UC(A), given by (52), is a series in R({TU)) 
the algebra of power series in the noncommutative indeterminates {T”],z1,,,..,2), with co- 
efficients in R. 

Every element F E R( (TO)) can be written in the form F = rr,O F,, where F, is a 
homogeneous form of degree r. F = xr,O F,. E R( (TO)) will be called a Lie element if _ 
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FO = 0 and if every F,, with r > 0, belongs to the free Lie algebra C[T’] (with respect to 
the bracket [G, H] = GH - HG) generated by (P](,=t,....,), over [w. Thus note that, in the 
present context, we are interpreting ( Ta)a,l ,....n as formal noncommutative indeterminates. 
By the universal property of free Lie algebras we know that there exists a unique Lie algebra 
homomorphism 

W”1 - G, (53) 

which sends each formal noncommutative indeterminate Ta in the basis element Ta for 
S (we hope that there is no danger of confusion in the use of the same symbol Ta in the 
previous two contexts). 

Recall that given a power series U = Id + S E R((Ta)), we define its logarithm, 
1ogU E R((T’)), through 

1ogU = log(Zd + S) = c TSr. (54) 

Moreover, for a power series F E R( ( Ta)), with zero constant term, we define its exponential 

by 

expF= c-. 
r10 

As usual one has the formulas 

exp(log(U)) = U and log(exp(F)) = F. 

Finally, define the symbol [TO’, Ta2, . . , TarI inductively by 

[TU’] = T“‘, 

(56) 

[Ta’,Ta2,..., Tar] = [[Ta’, T@, . . , Tar-‘], Tar]. (57) 

Proposition 2. Zf A E 52 ’ (M) @ G, and ~5 E LxMp, then F&(A) 3 log(U,(A)) is a Lie 
element. In fact we have that 

- 
F,(A) = >:(Fdr 

=c c ;(log+)aro,, . ..oa.)[Ta’, Ta2,. . . , Tar], (58) 
i-L-0 a’.....a, 

where log 6 was defined in (37). 

Proof That F,(A) is a Lie element is a direct application of Theorem 3.2 in [14, p. 541, 
and depends only on the fact that a! : Sh + Iw is an algebra morphism, i.e., 

&(u ??v) = &(u)c?(v) Vu, v E Sh. 
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So, we see that 

F;(A) = log(U,(A)) 

can be written in the form 

F,(A) = ~(F;,),,> 
r>u 

where each (Fs), is homogeneous of degree r, and belongs to the free Lie algebra generated 

by (TU]u=r.....n> over R. We can write 

(F6),. = c 63(wn, CO,,? wa, )T”’ . . T”) , (59) 
0, . . . ..Oy 

@(W, “‘Wk ??Wk+l ‘..Wkfs) = 0 

Vk > 1, V,, 1 I (by Theorem 2.2 in [ 13, p. 2 141). 
Now substituting 

in (54) and computing, we obtain that 

@ (w,, w,, . . _ .%,I = (log~)(w,,wa,‘~~w~t,). 

Finally, by Dynkin-Specht-Wever theorem (see Theorem 2.3 in 113, p. 2141), we have 
that 

r(F&), = c (logU)(w,_1wu2 . ..w.,.)[T”‘, T“‘. .., TN’]. 0 (60) 
0, . . . ..n. 

We call te series F,(A), given by (58), the BACH (Baker-Campbell-Hausdorff) series 
for the formal generalized holonomy U,(A). 

When a! = X, is a usual loop, we can given a sufficient condition for the convergence of 
the corresponding BACH series Fx, (A) = F,(A), using a reasoning similiar to that used 
in the classical case (see [ 121). In fact consider the image in S of each term (FG), under the 
homomorphism (53). Denote it by the same symbol. Consider also a multiplicative norm 
]] 11 in 8, such that ]][X, Y]l] ( l]X]] ]]Y (1 (this always exists (see [ 12])), and let 

S = max{]]T’(]:n = 1,. , n}. 

Then by induction we have that 

ll[T”’ , TO?, . , T”‘]ll ( 6’. 

Now we compute (log &)(wa, wNZ . w,~). For example, we have 
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loga, = &(Wl), 

logcy(wlw2) = cr(WlW2) - +5(Wl)&(WZ), 

logW1w2w3) = cr(WlW2W3) - ;[G(wl)+2w3) + ~(WIW2)~(W3)1 

+ @0,)~(w2)~(w3), 

log+lW203w4) = 6(WlW2W3@4) - ;[6(Wl)&(W2W3W4) + &(wlw2)a(wjw4) 

+ G(WlW2W3)h(W4)1 + $[+,)‘%~2)(%03wq) 

+ ~(Ol)~(w2W3)~(W4) + ~(WW2)~(W3)~(W)l 

- $&(w,)&(w2)&(w3)a(W4). 

and so on. Now with & = X, each term is given by Chen interated integration, and we have 

that 

M’ 
Ixy(w7,%~~‘~w,).)I I-1 

t-! 

where 

M = max(IXy(Wcr)l:a = 1,. . , n]. 

So we obtain 

ll(Fy)rllI $ c (10gw)(w,,w,,“~w,~)[T”‘T”‘....,T”’] II a, . . . ‘I,- II 
5 c D,A’. 

k=l 

with (recall that n = dim G): 

(61) 

(62) 

A = nMS. 

and 

Dr=;k; c . ’ j, ,_, j, Jl 1, . . jk!’ k=l ,, 
where the sum cj,,,,,,j, is made for all jl 2 1, . , jk 2 1 such that ,jl + + jk = r. 
Now the term xi, ,_,_. j, 1 /jl ! . . . jk! is the coefficient in t’ of the Taylor series in t = 0 of 

(e’ - I)“, and so r D, is the coefficient in t’ of the Taylor series in t = 0 of 

k=l 

or, what is the same, of 

f(t) = C l(et - l)k. 
kll 
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We compute that 

c 
&A’= nfodt. 

rzl s t 
0 

But the series for f(t) converges Vt: jet - 11 < 1, i.e., Vt: t c log2, and so zk,, D,A’ 
converges if A < log 2. Thus, by (62), we see that the BACH series F,(A) converges if 

A = nM6 < log2. (63) 

3.1. Examples 

(i) When the connection is abelian, say A = iw, then 

U,(iw) = 1 + C c&(w)“, 
k>l k! 

and we recover formula (1) of Section 1. The corresponding BACH formula is 

Fk(iw)=iC- , 
(-l)kp’G(wjk 

kll 

and so is convergent if 115 (0) ) -c 1. 
(i) if W = exp OR like in the Example of Section 2.1, then 

F,(A) = c R(w,)Ta E 4. 
a 

(ii) If a! = XL = exp(t log X,), then 

F,;(A) = tFx,(A) E G. 

if condition (63) is verified. 

Proposition 3. Let A E D 1 (M) @ 4. Then the set G = {U,(A)), offormal generalized 
holonomies, it is a group. In fact 

WA)UB(A) = U,,j(A), 

Vi?, p E LxM,, where 

[Us(A)]-’ = U,-I (A), 

[U,(A)]-’ = Id + c c (-l)r(G(~ar~,I_l . .oa,))Ta’Ta2.. . Tar. 
r>o aI “‘0, 

So the map a! H Ub (A) is a homomorphism of groups Lx, -+ G. 

Proof (see also Corollary 3.3 in [14, p. 551). 
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&(A)+(A) = (Id + ti(co,,)Ta’ + . .) + ~?(wu,w,~)T~’ Ta2 + . .) 

x(Zd + &oa,)Tal + . ..) + &o,pa,)Ta’Ta2 + . ..) 

= Id + (~+a,) + ,!%a, ))Ta’ 

+(+,,azz) + +,,)ibz,) + /%u,~a,))Ta’Taz 

+ ‘. . + (ii(W,, ” .Qzl) +~(%,)k&7, . ..Wz.) 
+. . . + j&, . . wa,))T”’ . T”’ + . . 

= Id + (6 * j)(coa,)T”’ + (~5 * j)(co,pa,)TalTa2 

+. . . + (6 * ji)(wu, . . wa,)TU’ . . T”’ + . . 

= t&j(A). 0 
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4. (Non)covariance of generalized holonomies 

Now let g : M --f G c Gl(p) be a gauge transformation and A E J2 ’ (M) @ 6 a 
connection l-form. g acts on A by 

A H Ag = g-‘Ag + g-’ dg. 

To obtain the corresponding infinitesimal action put g(t) = ert, so that g(o) = Id and 

e = $ _ s(t) : M + 4 c gl(p) 
t-o 

is an injinitesimal gauge transformation. Then the infinitesimal affine action on A is given 

by 

< H AC = A + DA$> (64) 

where DA$ = d< + A< - <A = d< + [A, 41 is the covariant derivative of 6, i.e., DA< is 
a tangent vector in A to the affine space of gauge connection l-forms. 

Now let 6 E LxMp. We want to study the change in the formal generalized holonomy 
when the connection A suffers an infinitesimal gauge transformation A H At. So we want 
to compute U,(A’), using only the differential constraints (41)-(44). However, to simplify 
matters we compute the “differential” of UC at A: 

d(&i)/t(DAt) = ; _ U,(A + tDA<). (65) 
t-o 

Calling B = DA$ = d< + [A, <] we have formally the following: 

d(Uti)A(DAt) = 2 _ &(A + tDA6) 
t-o 

=- d”, _ &;(A +tB) 
t-o 



326 J.N. Tavares/Journul of Geometry and Physics 26 (1998) 31 l-328 

- 
=5(B) + G(AB f BA) + &(AAB + ABA + BAA) + 

Now using the differential constraints (41)-(44), and denoting C = [A, (1, we have 

S(B) = &(dc + C) = G(C). 

S(AB + BA) = [c?(A), t(p)] - G(C) + &(AC + CA), 

S(AAB + ABA + BAA) 

= [a,(AA), c(p)] - &(AC + CA) + (r(AAC + ACA + CAA), 

&(AAAB + AABA + ABAA + BAAA) 

= [&(AAA), c(y)] - &(AAC + ACA + CAA) 

+ ii(AAAC + AACA + ACAA + CAAA). 

and so on, and so formally 

d(&)A(DA(=) = x([c?(PA :“A_‘. c(p)] + &(G; A, <) - &-I(&; A, <)). 
121 I II- I 

(66) 

where 

&,(a; A. 0 = W (A + $]A, $T 

=&(&A:. , A[A, <] + &A :. ,4[A, (]A + . . + [A, c] &A ;’ ./I). 

n-l n-2 ,I- I 

(67) 

Consider the partial sum of the N > 1 first terms of the series (66): 

A/). t-(p) 

I 

+ RN(&: A, <) (68) 

(we put&(AA . . A) ((n - 1) times) = Id for n = 1). So we see that if c,y=, G(AA . A) 
converges to U,(A) (in G c G L (p), when N -+ oo), then the formal generalized holonomy 
U, will be gauge covariant iff: 

,2!‘“, R/,/(&: A. <) = 0. (69) 
+ 

Thus we obtain the same result of Schilling [ 161, who has also given several examples 
of noncovariance of generalized holonomies. 

However, if we work with nilpotent connections, i.e., those for which A’ = 0 for some 
r > 1, then everything works well. In fact, assume that A E f2 ‘M @n/, , where ,q/;- denotes 
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the Lie algebra of nilpotent upper triangular (1. + 1) x (Y + 1) matrices. In this case, the 
series (52) for U& is finite and so convergent. For example, if 01, . , w,. E i2’M and 

A= 

0 co] 0 ‘.. ... 0 

0 0 w2 0 ... 0 
. . . . . . . . . 

0 0 0 “’ 0 wr 

0 0 0 ... 0 0 

then, for every generalized loop G, we have 

1 G(ut) &(UlU2) &(WlO2W3) ‘.. G(utw2...w,) 
0 1 fi(u2) cw(u2ug) . . &(u:! . . . u,) 

U,(A) = ’ ’ 
1 &(Wj) .” &(wg w,) 

. . . . . . . . . . . . . 

0 0 0 . . . 1 G(W) 
0 0 0 0 1 

Moreover in this case condition (69) is verified, and so U;,(A) is covariant for every gener- 
alized loop Cr. 

However, in the general case this seems not to be true, first because it seems very difficult 
to give a general criterion for convergence of the series (52) for UC, and second because 
condition (69) is not always verified, even if the series (52) converges! (see the examples 
in [ 161). 
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